VoxDev

Land Transport Infrastructure

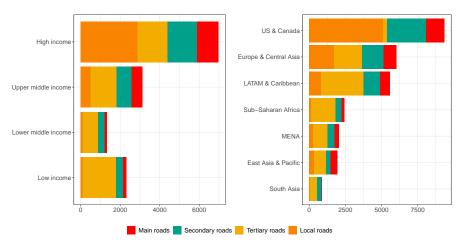
Senior Editors: Marco Gonzalez-Navarro, Román David Zárate

Co-Editors: Remi Jedwab, Nick Tsivanidis

Land transportation in developing countries

- Land transportation investments are substantial
 - * World Bank's portfolio: \$33.2B, 10% of total lending
 - * National govts spend up to 10% of GDP on infrastructure

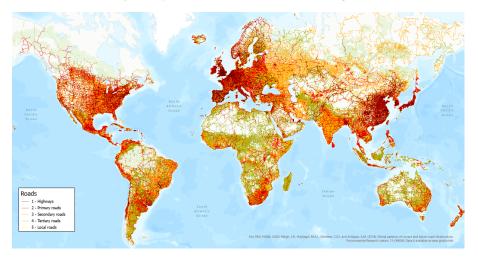
- Infrastructure plays an important role in the economy
 - * Facilitates market integration
 - * Enhances long-term productivity
 - * Improves the competitiveness of local actors in global markets
- We review:
 - 1. The land transportation landscape in developing countries
 - 2. Frameworks for evaluating the gains from transportation
 - 3. Lessons learned about the impact of land transportation
 - * Interregional transportation
 - * Intracity transportation


Cost of transportation

- Land transportation is more expensive in developing countries
 - * Road transport costs per tonne-km: \$0.17 in Central America vs. \$0.02 in USA (Osborne, Pachón, and Araya 2014)
 - * Trade costs increase with distance $4-5\times$ faster in Africa than in the US (Atkin and Donaldson 2015)
 - * Median trade costs in Africa are $5\times$ those in the rest of the world (Porteous 2019)

- High costs can stem from:
 - * Little, sparse infrastructure
 - * Low quality, reliability
 - * Market power of operators and intermediaries
 - * Expensive or ineffective procurement

Quantity of transportation


Figure: Road extent per capita

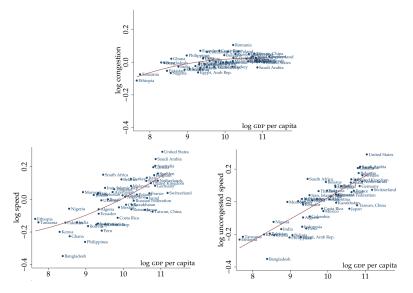
Notes: Population-weighted average across countries of a given income/region of the country's road extent per million inhabitants in 2018. Road extent information is taken from data compiled by Meijer et al. (2018).

Spatial Distribution of Roads across the Globe

Figure: Spatial distribution of roads across regions

Notes: This figure shows the worldwide spatial distribution of roads using data from the World Bank

Spatial Distribution of Railways across the Globe


Figure: Spatial distribution of railways across regions

Notes: This figure shows the worldwide spatial distribution of railways using data from the World Bank

Quality of urban transportation vs. GDP per capita

Figure: Relationship between speed and congestion with income per capita

Notes: This figure shows the relationship between speed and income per capita. Source: Akbar et al. 2023a

Quality of transportation

Land transportation services in developing countries are also lower quality:

Low rates of road paving Mesquita Moriera et al. (2013) and Foster and Briceno-Garmendia (2010)

■ Uncertainty in travel time \rightarrow lower use, higher inventories Iimi et al. (2019) and Datta (2012)

■ Lower capacity
Coşar and Demir (2016)

■ Crime and corruption payments Olken and Pande (2012)

 \blacksquare Slow urban speeds – congested & uncongested Akbar et al. (2023b)

Challenges: Procurement & placement

- Procurement and placement decisions are complex processes
 - * Strong institutions to function well

 $lue{}$ Corruption \rightarrow inflated costs, poor quality

Chen (2023) and Collier, Kirchberger, and Söderbom (2016)

- * Quality, costs difficult to observe
- * Institutions can improve outcomes:
 - * audits (Olken (2007), Indonesia)
 - * e-procurement (Lewis-Faupel et al. (2016), India, Indonesia)

- Political, ethnic favoritism can bias placement
 - * Worse in non-democratic periods Burgess et al. (2015), Kenya
 - * Favor resource extraction Bonfatti and Poelhekke (2017), Africa
 - * Used to buy votes Bonilla-Mejía and Morales (2023), Colombia
 - * Lucrative contracts go to relatives Lehne, Shapiro, and Vanden Eynde (2018), India

Challenges: Financing

- Government revenue in developing countries is low as a share of GDP
 - * Incentivize Public-private partnerships (PPP)?

- Little research on these arrangements
 - * Some evidence PPPs are not necessarily improvements over public provision Trebilcock and Rosenstock (2015) and Fabre and Straub (2023)
 - * May be more expensive in the presence of market power Bogart and Chaudhary (2012)

- Increased attention on Land value capture models Suzuki et al. (2015)
- Information on costs can be difficult to obtain

Conceptual Framework to evaluate Infrastructure Effects

Evaluating the benefits of infrastructure

- Seminal approaches focused on the time/cost savings:
 - * Compare new transport options with the best alternative technology (Fogel 1964; McFadden 1974)
 - * Railways in the US generate negligible effects

- Two fundamental challenges:
 - 1. Identification:
 - \star Infrastructure not randomly placed \to confounded causal inference
 - 2. General equilibrium effects:
 - * Spillovers to regions not directly treated: Relocation/reallocation increase benefits
 - * Relocation or growth?

Identification: Historical route instruments

Historical route or city instruments predict actual routes

■ Path-dependence:

(Martincus, Carballo, and Cusolito 2017; Banerjee, Duflo, and Qian 2020)

Instrument:

- Historic routes predict modern routes (relevance), and ...
- May be independent of recent productivity, amenity shocks (exogeneity)

Banerjee, Duflo, and Qian (2020)

Identification: Incidental connection instruments

Incidental connection instruments

- Infrastructure connects major points of interest
- Some places along the way get connected by chance

Instrument:

- Least-cost paths
 Faber (2014), Morten and Oliviera (2023), and
 Fenske, Kala, and Wei (2023)
- Shortest routes

Banerjee, Duflo, and Qian (2020), Jedwab and Moradi (2016), Ghani, Grover Goswami, and Kerr (2016), and Garcia-Lopez, Holl, and Viladecans-Marsal (2015)

Faber (2014)

The challenge of general equilibrium effects

- Relocation or growth?
 - * Empirical tests assume spillovers are local \rightarrow exclude nearby areas
 - * Challenging if spillovers are not spatially concentrated
- \blacksquare Transportation networks \rightarrow
 - * Changes in production output, prices, wages, trade and commuting shares
 - * Price and income effects in all locations
- New economic geography models of trade and iceberg transport costs
 - * Compute the economic impacts in all regions
 Allen and Arkolakis (2014), Redding and Rossi-Hansberg (2017), Allen, Arkolakis, and
 Li (2020), and Allen and Arkolakis (2022)
 - * Apply gravity to commuting Ahlfeldt et al. (2015)
- \blacksquare "Market access": sufficient statistic that aggregates impacts via access to trade Donaldson and Hornbeck (2016) and Ahlfeldt et al. (2015)

Interregional Transport

Rail: Periphery to port

- Colonial governments developed many rail investments in LI and MI countries
 - * Resource extraction and exports

■ Empirical evidence of positive impacts on GDP:

Jedwab and Moradi (2016), cocoa areas in Ghana

- * Empirical (spatial) tests for spillovers find limited evidence of relocation
- * Ability of factors to relocate is key for gains to materialize Banerjee, Duflo, and Qian (2020), China

Policy relevance for modern investments unclear

Rail: Connecting regions to each other

- $lue{}$ Evidence (largely from India) suggests rail connections $\rightarrow +$ economic impacts
 - * Improves market access
 - * Expand local industries

- Evidence from the literature:
 - * Donaldson (2018) Ricardian model of trade
 - * Large gains from 19th century rail in India
 - \star Model \to own trade share is sufficient statistic for welfare
 - * Fenske, Kala, and Wei (2023) least-cost instrument
 - * Colonial rail made connected cities in India larger
 - * Jedwab, Kerby, and Moradi (2017)
 - $\star\,$ Urban path dependence from rail connections in Kenya

High-speed passenger rail

- We know less about these newer types of passenger trains
 - * Evidence from China suggests that productivity and workers' welfare increase

- Evidence from the literature:
 - * Tian and Yu (2023) effects on firms
 - \star HSR increases export volumes and labor productivity in China
 - * Barwick et al. (2022) effects on workers
 - * HSR reduces exposure to extreme pollution and high temperatures

Highways: Periphery to port

- Highways connecting remote areas to ports/major cities can be transformative
- However, initial conditions matter for the materialization of these effects
- Evidence from the literature:
 - * Agricultural areas may further specialize, leading to slower manufacturing growth
 Faber (2014), China; Jedwab and Storeygard (2022), African countries
 - * Industrial areas in particular benefit
 Ghani, Grover Goswami, and Kerr (2016), India; Martincus, Carballo, and Cusolito (2017), Peru
 - * Trade integration improves allocative efficiency, markups Asturias, García-Santana, and Ramos (2019), India
 - ... and integrate labor markets, promoting specialization
 Morten and Oliviera (2023) and Pellegrina and Sotelo (2023), Brazil;
 Baldomero-Quintana (2022), Colombia

Highways: Connecting regions to each other

- Highways connecting small/medium cities may generate on net positive gains
- However, not all regions benefit equally
- Evidence from the literature:
 - * Benefits are largely net positive
 - * Large dispersion between regions with some areas declining in some cases Bird, Lebrand, and Venables (2020) and Lall and Lebrand (2020), BRI Central Asia; Coşar (2022), Turkey; Sotelo (2020), Peru
 - * Models ignoring GE effects, rerouting understate benefits Fan, Ti, and Luo (2023), China
 - * Where highways should be placed matters for benefits
 - Climate change erodes benefits Balboni (2023), Vietnam
 - ★ Biases for resource extraction, large cities → miss out on gains Bonfatti and Poelhekke (2017), Africa; Alder (2023), India

Rural or last-mile roads

Rural roads encourage technology adoption and sectoral reallocation

Asher and Novosad (2020) and Shamdasani (2021), India; Gebresilasse (2023), Ethiopia

... but the most remote areas fail to see increases in income

Alder et al. (2022), Ethiopia; Mitnik, Sanchez, and Yañez (2018), Haiti; Asher and Novosad (2020) and Shamdasani (2021), India

- With some important exceptions:
 - * Gertler et al. (2019), highways in Indonesia
 - * Brooks and Donovan (2020) river bridges in Nicaragua

Initial conditions and institutions matter to materialize the gains

Areas for future work: Interregional transportation

- How important is road quality versus quantity?
 - * Is the muted relationship between rural roads and incomes related to quality/capacity/costs?
- Relationship between infrastructure and distortions/market failures?
 - * Deviate from the iceberg assumption: include a transportation sector
 - * Market power in the intermediary sector
- How at risk are transportation networks to climate change? (Balboni 2023)

 Do transportation networks generate environmental externalities in GE? (Araujo, Juliano, and Bragança 2023)

Intracity Transportation

Intracity transportation

- What is the economic impact of highways, subways, buses, BRT?
 - * Bus Rapid Transit (BRT) \rightarrow buses with dedicated lanes
 - * Can also think of policies like tolls, HOV lanes
- Shares similar framework as interregional transportation
 - * Gravity to commuting flows instead of tradeflows
 - * It can also generate GE effects
- However, there are some key differences:
 - 1. Transit primarily moves **people** (commuters) vs. goods
 - 2. Transit options also attempt to address externalities (congestion, smog, etc.)

Road transit and urban economic geography

- Infrastructure promotes sprawl, but less available evidence than for the US Bluhm et al. (2023), Many developing countries
- Connecting commuters to jobs leads to higher gains than just time saved
 - * Increasing market access → more benefits in GE Tsivanidis (2022), BRT Bogotá
 - * Residents on upgraded routes directly value benefits
 Gonzalez-Navarro and Quintana-Domeque (2016), road paving Mexico
- Total use of public transit decreases with income
- However, transit investments may not be pro-poor due to GE effects:
 - * Relocation effects matter

Tsivanidis (2022), BRT Colombia; Balboni et al. (2020), BRT Dar Es Salaam

Roads and congestion

- New mobile data: Developing country cities have very slow speeds.
 - * Speeds in high income countries are 50% faster than low income country cities Akbar et al. (2023b), India
 - * Speeds are slow even at uncongested times Akbar et al. (2023a), India

- Commuters have inelastic demand for departure times:
 - * Congestion taxes may be ineffective
 Kreindler (2022), Jakarta; Akbar and Duranton (2017), Bogotá
- Less available evidence on other congestion policies
 - * HOV lanes mitigate delays in Jakarta Hanna, Kreindler, and Olken (2017)
 - * Addressing encroachment: routes may be promising policies Akbar et al. (2023a)

Roads and other externalities

- Vehicles generate more negative effects than just congestion:
 - * Greenhouse gases, carbon monoxide, particulate matter
 - * Accidents → morbidity, mortality
 - * Noise

- These externalities impose very high costs for welfare:
 - * It is very difficult to measure these externalities
 - $\ast\,$ How to design instruments that replicate Pigouvian taxes

- Regulating these externalities is challenging
 - We know little on how to design policies for regulating vehicle externalities Davis (2008) and Oliva (2015), Mexico City
 - Messaging about accidents in Kenyan minibuses effective in reducing accidents Habyarimana and William (2015)

What is the right amount of public transportation?

- Public transit networks tend to trade off
 - * frequency of service
 - * more extensive network

- Evidence from the literature:
 - * More minibuses increase welfare by decreasing wait time in Cape Town Conwell (2023)
 - Optimal BRT network would be more extensive in Jakarta Kreindler et al. (2023)

- Importance for studying several questions
 - * Informal transportation modes in developing countries
 - * Design the optimal frequency of buses or trains
 - * Motorization

Subways, light rail and cable cars

- \blacksquare Globally, urban rail causes decentralization, but to a lesser extent than roads Gonzalez-Navarro and Turner (2018)
- Urban rail and cable cars connect residents to opportunity in the form of:
 - * formal employment Zarate (2023), Mexico City
 - * non-criminal employment Khanna et al. (2022), Medellín
 - * collaboration and innovation Koh, Li, and Xu (2023), Beijing
- Subway expansions can substitute for car use and lead to improved air quality Gendron-Carrier et al. (2022), globally; Gu et al. (2021), China
- ... but low quality may hinder demand
 Gaduh, Gračner, and Rothenberg (2022), Jakarta

Areas for future work: Intracity transit

- What policies would be effective at improving the quality of public transit?
- What is the substitutability or complementarity between transit options?
 - * Origin-destination surveys
 - * How does this affect the magnitude of the gains to residents?
- Does the geography of a city matter for optimal infrastructure investments?
 - * Pancakes vs. pyramids Lall et al. (2021)
 - * Skyscrapers revolution Remi Jedwab and Baum-Snow (2023)
- Impacts of increased motorization, ride share apps, and other gig services?
 Rhotenberg and Du (2023)

General Overview and Areas for Future Research

Summing up

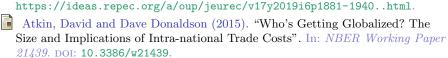
- Recent research has studied land transportation in developing countries
 - * Infrastructure investments have the potential to generate large gains
 - * These investments can also generate substantial regional inequalities
 - * Still questions on how to finance them
- GE models have facilitated nuanced analysis of transportation investments
 - * As a whole effects are aggregate
 - * They are not just a reshuffling of economic activity
- Intercity transit options:
 - * Benefit relatively more developed areas than rural ones
 - Lead to more specialization
 - * The gains depend on the initial conditions
- Intracity transportation:
 - * Has shown to generate significant gains in productivity
 - * GE affects can make them less pro-poor

Future Research

- Emerging research is leveraging **novel data** to study several questions:
- The dynamic impacts of infrastructure:
 - * Relationship with climate change
 - * Relationship with path-dependence: capital and labor
- Interaction with market failures: pollution, market power
 - * Market power in the transportation sector
 - * Pollution generated by roads and transport
- The distributional consequences of transit investments
 - * Effects along the income distribution
 - * Dynamic models to study sorting Warnes (2021)
- Characterizing the optimal transportation network
 - * How does it depend on the geography and initial conditions?
 - * Can it generate a big push?

References I

- Ahlfeldt, Gabriel M. et al. (2015). "The Economics of Density: Evidence From the Berlin Wall". In: *Econometrica* 83.6, pp. 2127–2189. URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10876.
- Akbar, Protoy and Gilles Duranton (2017). "Measuring the cost of congestion in a highly congested city: Bogotá". In: CAF Working paper.
- Akbar, Prottoy et al. (2023a). "Mobility and Congestion in Urban India". en. In: American Economic Review 113.4, pp. 1083-1111. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20181662.
- Akbar, Prottoy A. et al. (2023b). "The Fast, the Slow and the Congested: Urban Transportation in Rich and Poor Countries". In: NBER Working Paper No. 31642.
- Alder, Simon (2023). Chinese Roads in India: The Effect of Transport Infrastructure on Economic Development. Working Paper.
- Alder, Simon et al. (2022). "The Impact of Ethiopia's Road Investment Program on Economic Development and Land Use: Evidence from Satellite Data". In: World Bank Policy Research Working Papers. DOI: 10.1596/1813-9450-10000. URL: https://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-10000 (visited on 06/05/2023).


References II

- - Allen, Treb and Costas Arkolakis (2014). "Trade and the Topography of the Spatial Economy". In: *The Quarterly Journal of Economics* 129.3, pp. 1085–1140. DOI: 10.1093/qje/qju016. (Visited on 05/31/2023).
- (2022). "The Welfare Effects of Transportation Infrastructure Improvements". In: Review of Economic Studies 89.6, pp. 2911–2957. URL: https://academic.oup.com/restud/article/89/6/2911/6519332.
- Allen, Treb, Costas Arkolakis, and Xiangliang Li (2020). "On the Equilibrium Properties of Network Models with Heterogeneous Agents". In: *NBER Working Paper 27837*.
- Araujo, Rafael, Assunção Juliano, and Arthur Amorim Bragança (2023). "The Effects of Transportation Infrastructure on Deforestation in the Amazon: A General Equilibrium Approach". In: World Bank Policy Research Working Paper 10415.
- Asher, Sam and Paul Novosad (2020). "Rural Roads and Local Economic Development". en. In: American Economic Review 110.3, pp. 797–823. ISSN: 0002-8282. DOI: 10.1257/aer.20180268. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20180268 (visited on 06/05/2023).

References III

Asturias, Jose, Manuel García-Santana, and Roberto Ramos (2019). "Competition and the Welfare Gains from Transportation Infrastructure: Evidence from the Golden Quadrilateral of India". In: Journal of the European Economic Association 17.6, pp. 1881–1940. URL:

Balboni, Clare (2023). "In Harm's Way? Infrastructure Investments and the Persistence of Coastal Cities". In: *Working Paper*. URL: https://economics.mit.edu/sites/default/files/publications/Catastrophe_Risk_and_Settlement_Location.pdf.

Balboni, Clare et al. (2020). "Transportation, Gentrification, and Urban Mobility: The Inequality Effects of Place-Based Policies". In: Working Paper. URL: http://stanford.edu/~memorten/ewExternalFiles/CCMS_TZ.pdf.

Baldomero-Quintana, Luis (2022). "How Infrastructure Shapes Comparative Advantage". In: Working paper, mimeo.

References IV

Banerjee, Abhijit, Esther Duflo, and Nancy Qian (2020). "On the Road: Access to Transportation Infrastructure and Economic Growth in China". In: *Journal of Development Economics* 145, p. 102442. DOI: 10.1016/j.jdeveco.2020.102442. (Visited on 05/31/2023).

Barwick, Panle Jia et al. (2022). "Improved Transportation Networks Facilitate Adaptation to Pollution and Temperature Extremes". In: *NBER Working Paper* 30462.

Bird, Julia, Mathilde Lebrand, and Anthony J. Venables (2020). "The Belt and Road Initiative: Reshaping Economic Geography in Central Asia?" en. In: Journal of Development Economics 144, p. 102441. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2020.102441. URL: https://www.sciencedirect.com/science/article/pii/S030438782030016X (visited on 06/05/2023).

Bluhm, Richard et al. (2023). "Connective Financing: Chinese Infrastructure Projects and the Diffusion of Economic Activity in Developing Countries". In: CEPR Working Paper 14818.

References V

Bogart, Dan and Latika Chaudhary (2012). "Regulation, Ownership, and Costs: A Historical Perspective from Indian Railways". en. In: *American Economic Journal: Economic Policy* 4.1, pp. 28–57. ISSN: 1945-7731. DOI: 10.1257/pol.4.1.28. URL:

https://www.aeaweb.org/articles?id=10.1257/pol.4.1.28 (visited on 06/23/2023).

Bonfatti, Roberto and Steven Poelhekke (2017). "From Mine to Coast: Transport Infrastructure and the Direction of Trade in Developing Countries". en. In: *Journal of Development Economics* 127, pp. 91–108. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2017.03.004. URL: https://www.sciencedirect.com/science/article/pii/S0304387817300287

 $\label{lem:https://www.sciencedirect.com/science/article/pii/S0304387817300287} (visited on 06/23/2023).$

Bonilla-Mejía, L and J Morales (2023). "Jam-Barrel Politics". In: Review of Economics and Statistics forthcoming.

Brooks, Wyatt and Kevin Donovan (2020). "Eliminating Uncertainty in Market Access: The Impact of New Bridges in Rural Nicaragua". In:

Econometrica 88.5, pp. 1965—1997. DOI: https://doi.org/10.3982/ECTA15828.

URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA15828.

References VI

Burgess, Robin et al. (2015). "The Value of Democracy: Evidence from Road Building in Kenya". en-US. In: American Economic Review 105.6, pp. 1817—1851. URL: http://emiguel.econ.berkeley.edu/research/the-value-of-democracy-evidence-from-road-building-in-kenya/ (visited on 06/20/2023).

Chen, Qianmiao (2023). "Corruption in Procurement Auctions: Evidence from Collusion between Officers and Firms". In: Working Paper.

Collier, Paul, Martina Kirchberger, and Måns Söderbom (2016). "The Cost of Road Infrastructure in Low- and Middle-Income Countries". In: *The World Bank Economic Review* 30.3, pp. 522–548. ISSN: 0258-6770. DOI: 10.1093/wber/lhv037.

Conwell, Lucas (2023). "Are There Too Many Minibuses in Cape Town? Privatized Provision of Public Transit". In: Working Paper.

Coşar, Kerem (2022). "Overland Transport Costs, a Review". In: World Bank Policy Research Working Paper 10156.

References VII

Coşar, Kerem and Banu Demir (2016). "Domestic Road Infrastructure and International Trade: Evidence from Turkey". en. In: Journal of Development Economics 118, pp. 232–244. ISSN: 0304-3878. DOI:

10.1016/j.jdeveco.2015.10.001. URL:

 $\label{lem:https://www.sciencedirect.com/science/article/pii/S0304387815001121} (visited on 06/05/2023).$

Datta, Saugato (2012). "The Impact of Improved Highways on Indian Firms". en. In: Journal of Development Economics 99.1, pp. 46-57. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2011.08.005. URL:

https://www.sciencedirect.com/science/article/pii/S0304387811000861 (visited on 06/23/2023).

Davis, Lucas (2008). "The Effect of Driving Restrictions on Air Quality in Mexico City". In: *Journal of Political Economy* 116.1, pp. 38–81. DOI: 10.1086/529398. URL:

https://www.journals.uchicago.edu/doi/10.1086/529398 (visited on 05/31/2023).

References VIII

- - Donaldson, Dave (2018). "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure". en. In: *American Economic Review* 108.4-5, pp. 899-934. ISSN: 0002-8282. DOI: 10.1257/aer.20101199. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20101199 (visited on 05/31/2023).
- Donaldson, Dave and Richard Hornbeck (2016). "Railroads and American Economic Growth: A "Market Access" Approach". In: The Quarterly Journal of Economics 131.2, pp. 799–858. ISSN: 0033-5533. DOI: 10.1093/qje/qjw002. URL:

https://doi.org/10.1093/qje/qjw002 (visited on 05/31/2023).

- Faber, Benjamin (2014). "Trade Integration, Market Size, and Industrialization: Evidence from China's National Trunk Highway System". In: Review of Economic Studies 81.3, pp. 1046–1070. DOI: 10.1093/restud/rdu010. (Visited on 05/31/2023).
- Fabre, Anaïs and Stéphane Straub (2023). "The Impact of Public-Private Partnerships (PPPs) in Infrastructure, Health, and Education". en. In: Journal of Economic Literature 61.2, pp. 655-715. ISSN: 0022-0515. DOI: 10.1257/jel.20211607. (visited on the control of the control o
- https://www.aeaweb.org/articles?id=10.1257/jel.20211607 (visited on 06/23/2023).

References IX

Fan, Jingting, Lu Ti, and Wenlan Luo (2023). "Valuing Domestic Transport Infrastructure: A View from the Route Choice of Exporters". In: *Review of Economics and Statistics* 105.6, pp. 1562–1579.

Fenske, J, N Kala, and J Wei (2023). "Railways and Cities in India". In: *Journal of Development Economics* 161.

Fogel, Robert W. (1964). Railroads and American Economic Growth: Essays in Econometric History. Johns Hopkins University Press.

Foster, Vivien and Cecilia Briceno-Garmendia (2010). Africa's Infrastructure: A Time for Transformation. World Bank. ISBN: 978-0-8213-8041-3. DOI: 10.1596/978-0-8213-8041-3. URL: http://hdl.handle.net/10986/2692 (visited on 06/05/2023).

Gaduh, Arya, Tadeja Gračner, and Alexander Rothenberg (2022). "Life in the Slow Lane: Unintended Consequences of Public Transit in Jakarta". In: *Journal of Urban Economics* 128.

References X

Garcia-Lopez, Miguel-Angel, Adelheid Holl, and Elisabet Viladecans-Marsal (2015). "Suburbanization and Highways in Spain when the Romans and the Bourbons Still Shape its Cities". In: *Journal of Urban Economics* 85, pp. 52-67. DOI: 10.1016/j.jue.2014.11.002. URL: https://www.sciencedirect.com/science/article/abs/pii/S0094119014000953

//www.sciencedirect.com/science/article/abs/pii/S0094119014000953 (visited on 05/31/2023).

Gebresilasse, Mesay (2023). "Rural Roads, Agricultural Extension, and Productivity". en. In: Journal of Development Economics 162, p. 103048. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2023.103048. URL: https://www.sciencedirect.com/science/article/pii/S0304387823000032 (visited on 06/05/2023).

Gendron-Carrier, Nicolas et al. (2022). "Subways and Urban Air Pollution". en. In: American Economic Journal: Applied Economics 14.1, pp. 164-196. ISSN: 1945-7782. DOI: 10.1257/app.20180168. URL: https://www.aeaweb.org/articles?id=10.1257/app.20180168 (visited on

Gertler, Paul et al. (2019). "Road Quality, Local Economic Activity, and Welfare: Evidence from Indonesia's Highways". In: NBER Working Paper 30454.

References XI

Ghani, Ejaz, Arti Grover Goswami, and William Kerr (2016). "Highway to Success: The Impact of the Golden Quadrilateral Project for the Location and Performance of Indian Manufacturing". In: *The Economic Journal* 126.591, pp. 317–357. DOI: 10.1111/ecoj.12207. URL: https://onlinelibrary.wiley.com/doi/full/10.1111/ecoj.12207 (visited on 05/31/2023).

Gonzalez-Navarro, Marco and Climent Quintana-Domeque (2016). "Paving Streets for the Poor: Experimental Analysis of Infrastructure Effects". In: Review of Economics and Statistics 98.2, pp. 254-267. URL: https://direct.mit.edu/rest/article-abstract/98/2/254/58333/Paving-Streets-for-the-Poor-Experimental-Analysis?redirectedFrom=fulltext

(visited on 05/31/2023).

Gonzalez-Navarro, Marco and Matthew A. Turner (2018). "Subways and Urban Growth: Evidence from Earth". In: Journal of Urban Economics 108, pp. 85–106. URL: https:

//www.sciencedirect.com/science/article/abs/pii/S009411901830072X (visited on 05/31/2023).

Gu, Yizhen et al. (2021). "Subways and Road Congestion". In: American Economic Journal: Applied Economics 13.2, pp. 83–115.

References XII

Habyarimana, J and J William (2015). "Results of a Large-Scale Randomized Behavior Change Intervention on Road Safety in Kenya". In: *Proceedings of the National Academy of Science* 112.34.

Hanna, Rema, Gabriel Kreindler, and Benjamin A Olken (2017). "Citywide Effects of High-Occupancy Vehicle Restrictions: Evidence from "Three-in-One" in Jakarta". In: Science 357.6346, pp. 89–93. URL: https://www.science.org/doi/10.1126/science.aan2747 (visited on

06/26/2023).

Iimi, Atsushi et al. (2019). "Port Rail Connectivity and Agricultural Production: Evidence from a Large Sample of Farmers in Ethiopia". In: *Journal of Applied Economics* 22.1, pp. 152–173. ISSN: 1514-0326. DOI: 10.1080/15140326.2019.1591814. URL:

https://doi.org/10.1080/15140326.2019.1591814 (visited on 06/05/2023).

Jedwab, Remi, Edward Kerby, and Alexander Moradi (2017). "History, Path Dependence and Development: Evidence from Colonial Railways, Settlers and Cities in Kenya". In: *The Economic Journal* 127.603, pp. 1467–1494. DOI: https://doi.org/10.1111/ecoj.12347. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1111/ecoj.12347.

References XIII

Jedwab, Remi and Alexander Moradi (2016). "The Permanent Effects of Transportation Revolutions in Poor Countries: Evidence from Africa". In: *The Review of Economics and Statistics* 98, pp. 268–284. DOI: 10.1162/REST_a_00540. (Visited on 05/31/2023).

Jedwab, Rémi and Adam Storeygard (2022). "The Average and Heterogeneous Effects of Transportation Investments: Evidence from Sub-Saharan Africa 1960–2010". In: *Journal of the European Economic Association* 20.1, pp. 1–38. URL: https://academic.oup.com/jeea/article/20/1/1/6302382.

Khanna, Gaurav et al. (2022). "Spatial Mobility, Economic Opportunity, and Crime". In: *Working Paper*.

Koh, Yumi, Jing Li, and Jianhuan Xu (2023). "Subway, Collaborative Matching, and Innovation". In: *The Review of Economics and Statistics*.

Kreindler, Gabriel (2022). "Peak-Hour Road Congestion Pricing: Experimental Evidence and Equilibrium Implications". In: Working Paper. URL: https://raw.githubusercontent.com/Gkreindler/personal-website/default/paper-cp-bangalore/Kreindler%20(2022)%20paper%20and%20appendix%2010-09.pdf.

References XIV

Kreindler, Gabriel et al. (2023). "Optimal Public Transportation Networks: Evidence from the World's Largest Bus Rapid Transit System in Jakarta". In: Working Paper. URL: https:

//drive.google.com/file/d/1BeIrHvZOFSg30c672oG9FAqX8s82lnA0/view.

Lall, Somik et al. (2021). "Pancakes to Pyramids: City Form to Promote Sustainable Growth". In: World Bank Report.

Lall, Somik V. and Mathilde Lebrand (2020). "Who Wins, Who Loses? Understanding the Spatially Differentiated Effects of the Belt and Road Initiative". In: Journal of Development Economics 146, p. 102496. ISSN: 0304-3878. DOI: https://doi.org/10.1016/j.jdeveco.2020.102496. URL: https://www.sciencedirect.com/science/article/pii/S0304387820300717.

Lehne, Jonathan, Jacob N. Shapiro, and Oliver Vanden Eynde (2018). "Building Connections: Political Corruption and Road Construction in India". en. In: Journal of Development Economics 131, pp. 62–78. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2017.10.009. URL:

 $\label{lem:https://www.sciencedirect.com/science/article/pii/S0304387817300883} (visited on 06/21/2023).$

References XV

Lewis-Faupel, Sean et al. (2016). "Can Electronic Procurement Improve Infrastructure Provision? Evidence from Public Works in India and Indonesia". en. In: American Economic Journal: Economic Policy 8.3, pp. 258–283. ISSN: 1945-7731. DOI: 10.1257/pol.20140258. URL: https://www.aeaweb.org/articles?id=10.1257/pol.20140258 (visited on 06/21/2023).

Martincus, Christian Volpe, Jeronimo Carballo, and Ana Cusolito (2017). "Roads, Exports and Employment: Evidence from a Developing Country". In: *Journal of Development Economics* 125, pp. 21–39. DOI: 10.1016/j.jdeveco.2016.10.002. (Visited on 05/31/2023).

McFadden, Daniel (1974). "Conditional Logit Analysis of Qualitative Choice Behavior". en. In: Frontiers in Econometrics. Ed. by Paul Zarembka. New York: Academic Press, pp. 105–142.

Meijer, Johan R. et al. (2018). "Global Patterns of Current and Future Road Infrastructure". en. In: *Environmental Research Letters* 13.6, p. 064006. ISSN: 1748-9326. DOI: 10.1088/1748-9326/aabd42. URL: https://dx.doi.org/10.1088/1748-9326/aabd42 (visited on 06/15/2023).

References XVI

Mesquita Moriera, Mauricio et al. (2013). Too Far to Export: Domestic Transport Costs and Regional Export Disparities in Latin America and the Caribbean. Inter-American Development Bank. URL:

https://publications.iadb.org/en/publication/17434/too-far-export-domestic-transport-costs-and-regional-export-disparities-latin (visited on 06/05/2023).

Mitnik, Oscar A., Raul Sanchez, and Patricia Yañez (2018). "Bright Investments: Measuring the Impact of Transport Infrastructure Using Luminosity Data in Haiti". English. In: Inter-American Development Bank Working Paper 935. DOI: 10.18235/0001474. URL: https://publications.iadb.org/en/bright-investments-measuring-

https://publications.iadb.org/en/bright-investments-measuring-impact-transport-infrastructure-using-luminosity-data-haiti (visited on 06/05/2023).

Morten, Melanie and Jaquieline Oliviera (2023). "The Effects of Roads on Trade and Migration: Evidence from a Planned Capital City". In: *Working Paper*.


References XVII

Oliva, Paulina (2015). "Environmental Regulations and Corruption:

Automobile Emissions in Mexico City". In: Journal of Political Economy 123.3, pp. 686-724. ISSN: 0022-3808. DOI: 10.1086/680936. URL: https://www.journals.uchicago.edu/doi/abs/10.1086/680936 (visited on

 $\label{localization} \mbox{https://www.journals.uchicago.edu/doi/10.1086/517935} \mbox{ (visited on } 06/20/2023).$

Osborne, Theresa, Maria Caudia Pachón, and Gonzalo Enrique Araya (2014). "What Drives the High Price of Road Freight Transport in Central America?" In: World Bank Policy Research Working Paper 6844.

Pellegrina, Heitor and Sebastian Sotelo (2023). "Migration, Specialization, and Trade: Evidence from Brazil's March to the West". In: Working Paper.

References XVIII

Porteous, Obie (2019). "High Trade Costs and Their Consequences: An Estimated Dynamic Model of African Agricultural Storage and Trade". en. In: American Economic Journal: Applied Economics 11.4, pp. 327–366. ISSN: 1945-7782. DOI: 10.1257/app.20170442. URL:

https://www.aeaweb.org/articles?id=10.1257/app.20170442 (visited on 06/23/2023).

Redding, Stephen J. and Esteban Rossi-Hansberg (2017). "Quantitative Spatial Economics". In: *Annual Review of Economics* 9.1, pp. 21–58. DOI: 10.1146/annurev-economics. URL: https://ideas.repec.org/a/anr/reveco/v9y2017p21-58.html.

Remi Jedwab, Gabriel Ahlfeldt and Nathaniel Baum-Snow (2023). "The Global Economic and Environmental Effects of Vertical Urban Development". In: Working Paper.

Rhotenberg, Alex and Jingxuan Du (2023). "The Benefits and Costs of Motorization: Evidence from Jakarta". In: Working Paper.

Shamdasani, Yogita (2021). "Rural road infrastructure & agricultural production: Evidence from India". en. In: Journal of Development Economics 152, p. 102686. ISSN: 0304-3878. DOI: 10.1016/j.jdeveco.2021.102686. URL: https://www.sciencedirect.com/science/article/pii/S0304387821000638 (visited on 06/05/2023).

References XIX

- - Sotelo, Sebastian (2020). "Domestic Trade Frictions and Agriculture". In: $Journal\ of\ Political\ Economy\ 128.7,\ pp.\ 2690-2738.$
- - Suzuki, H. et al. (2015). Financing Transit-Oriented Development with Land Values: Adapting Land Value Capture in Developing Countries. Urban Development Series, World Bank.
- Tian, Lin and Yue Yu (2023). "Geographic Integration and Firm Exports: Evidence from China". In: Working Paper.
- Trebilcock, Michael and Michael Rosenstock (2015). "Infrastructure Public-Private Partnerships in the Developing World: Lessons from Recent Experience". In: *The Journal of Development Studies* 51.4, pp. 335–354. ISSN: 0022-0388. DOI: 10.1080/00220388.2014.959935. (Visited on 06/23/2023).
- Tsivanidis, Nick (2022). "Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bogotá's TransMilenio". In: Working Paper.
- Warnes, Pablo E. (2021). "Transport Infrastructure Improvements and Spatial Sorting: Evidence from Buenos Aires". In: Working Paper.
 - Zarate, Roman (2023). "Spatial Misallocation, Informality, and Transit Improvements: Evidence from Mexico City". In: World Bank Policy Research Working Paper 9990. URL: https://www.romandavidzarate.com/_files/ugd/0794ab_705be92077a24a3e876da376a50288d5.pdf.